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1 Fishbase Nutrient Analysis Tool
Research has demonstrated the potential importance of fish as a critical source
of micronutrients for many people, particularly within middle and low income
countries (Vaitla et al. 2018, Hicks et al. 2019). Yet measured nutrient values
are relatively scarce for fish, with typically few species represented from only a
few countries. To overcome this data limitation, we developed a Bayesian hier-
archical model that includes phylogenetic information (reflecting the interrelat-
edness of fish species) as well as trait-based information (reflecting key aspects
of fish diet, thermal regime, and energetic demand) to predict concentrations of
seven key nutrients (calcium, iron, omega-3, protein, selenium, vitamin A, and
Zinc) for the world’s marine and inland fish species.

It is important to recognize that the predictions generated by our statistical
model represent a set of extreme out of sample predictions - using informa-
tion from less than 10% of fish species to predict the nutrient content for the
remaining 90% plus species. Yet these predictions also represent the best avail-
able information about what the nutrient content of the world’s fishes might be.
As such, this codebase is a work in progress that we expect to be constantly
updated as new data or new covariate information becomes available. Recent
fieldwork from our team sampling tropical fishes in Seychelles has shown reason-
able out of sample predictive ability from our original model published in Hicks
et al. 2019. However we also expect that the model will provide bad estimates
for some species and for some locations.

Therefore we ask that you, dear user, let us know how the model is per-
forming against your own observations, and we hope that you will be willing
to contribute new data to this project using a clear sampling and analysis pro-
tocol, publishing your new data, and alerting our InFoods collaborators to the
new data. We also welcome new model structure ideas to be shared with our
model developer. These contributions will help improve the nutrient predictions
available in FishBase and, ultimately, the quality of fish-derived nutrient data
guiding food policy around the world.
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2 Codebase
A GitHub Repo has been put together to host the codebase for the Nutrient
Analysis Tool.

2.1 Repo Contents
The NutrientFishbase repo includes a few key files:

NutrientFishbase/model/FishBase_Nutrient_Models.py: Python code
for estimating model parameters from observed nutrient data (from species in
NutrientFishbase/data/all_nutrients_active.csv and traits from Nutri-
entFishbase/data/all_traits_active.csv).

NutrientFishbase/model/FishBase_Nutrient_Predictions.py: Python
code for using nutrient model posteriors to predict nutrient content for unob-
served species (from NutrientFishbase/data/all_traits_for_predictions.csv),
based on phylogeny and traits.

2.2 Repo Use
The models include several python package dependencies, including Pandas and
PyMC3.

To run the models, simply download the FishBase_Nutrient_Models.py
file and run it in python

python run FishBase_Nutrient_Models

which will grab the required files from GitHub and generate a range of plots
and files for each nutrient. Generated plots for each nutrient (X) include:

X_LooPit.jpg: a three panel figure including a plot of the observed data
(Yi) with their posterior predictive means, a plot of the leave-one-out probabil-
ity integral transform (LOO-PIT) for the data against a uniform distribution,
and a plot of the LOO-PIT expected cumulative density function (ECDF) and
an expected uniform CDF, all of which look for ways in which the model is
failing to fit the observed and expected data. An outline of these plots, and the
source for their code, can be found here.

X_ObsPred.jpg: a two-panel plot of the within-model observed (red) vs
predicted (blue) values and their 95% highest posterior density intervals, and
a plot of the distribution of the within-model observed and predicted values.
These provide some measure of model fit and show how the models fail, gener-
ally at the highest end, suggesting additional covariates are needed to predict
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rare, high concentration nutrient values.

X_PriorPC.jpg: a plot of the prior predictive distribution and the ob-
served data.

X_Trace.jpg: a large figure depicting both the posterior distribution and
trace for each model parameter.

X_results.csv: a flat file containing the trace for each paremeter as an
individual column.

X_Summary.csv: a flat file with summary statistics for each parameter
including the posterior mean, standard deviation (sd), lower 94% highest pos-
terior density interval (hdi_3%), upper posterior density interval (hdi_97%),
mean Monte Carlo standard error (mcse_mean), standard deviation Monte
Carlo standard error (mcse_sd), effective sample size mean (ess_mean), ef-
fective sample size standard deviation (ess_sd), effective sample size central
tendency (ess_bulk), effective sample size distribution tail (ess_tail), and con-
vergence ratio (r_hat).

To generate predictions, simply download the FishBase_Nutrient_Predictions.py
file (after you’ve run the models) and run it in python, python run Fish-
Base_Nutrient_Predictions, which will grab the X_results.csv files and
will use covariates to generate posterior predictive values for all the species listed
in all_traits_for_predictions.csv and generate two files:

Species_Nutrient_Predictions.csv: a flat file with summary statistics
for each nutrient for each species, including the scientific name of the species
(species), the FishBase species code (spec_code), a highest posterior predictive
density value (X_mu), a lower 95% highest posterior predictive density interval
(X_l95), a lower 50% highest posterior predictive density interval (X_l50), an
upper 50% highest posterior predictive density interval (X_h95), and an upper
95% highest posterior predictive density interval (X_h95).

Species_Obs_predictions.jpg: a plot of the distribution of the predicted
nutrients (histogram) against the range (dashed vertical lines) and median (solid
vertical line) of the observed data.

2.3 Bayesian Model Covariates
Fish consume nutrients in relation to key aspects of their diet, energetic demand,
and thermal regime, in ways that are reflected by their individual species traits.
Recognizing this, our statistical models represent these dimensions using traits
sourced directly from FishBase. Specifically these include:
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1. Feeding pathway (FP): indicates whether nutrients are sourced through a
pelagic or benthic food web.

2. Trophic level (TL): represents the number of feeding linkages between pri-
mary producers and a given species.

3. Environment (EN): refers to the aquatic regime; one of marine, freshwa-
ter, brackish, or mixed (more than one environment).

4. Water column (WC): refers to typical position in the water column; one
of pelagic, demersal, reef-associated, bathypelagic, or benthopelagic, each
of which has distinct pathways for nutrient input and cycling.

5. Maximum length (Lmax): refers to how long a species is expected to
grow, and scales directly with key attributes relating to home range size
and metabolism.

6. Age at maturity (Amat): reflects the time at which resources are allocated
to reproduction.

7. Body shape (BS): reflects how fish feed and move through their environ-
ment; one of flat, elongate (or eel-like), fusiform, or having short-deep
bodies.

8. Geographic zone (GZ): represents the thermal regime typical of each species;
one of tropical, subtropical, temperate, and polar/deep.

While fish traits are directly linked to where and what fish eat, these charac-
teristics are known to be correlated among related species, resulting in phylogenetically-
predictable nutrient content (Vaitla et al. 2018). Therefore, we included phylo-
genetic relatedness within the correlation structure of our statistical model (see
*Model structure* below), using a recently-developed phylogenetic tree for all
marine fishes (Rabosky et al. 2013).

Lastly, samples of fish tissue in our nutrients database included nuisance
parameters (things that influence sample collection but are not of direct inter-
est), including the tissue type (muscle, whole, whole/parts, unknown; FO) and
preparation (wet, dry, unknown; PR).
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3 Bayesian Model Structure
The model that underlies our nutrient predictions is a modification of that pre-
sented in Hicks et al. 2019, where we removed a couple of covariates, depth
and K (growth rate), that had the potential to induce spurious correlation in
our posterior effect sizes, given their potential for collider bias in our asserted
directed acyclic graph.

As an alternative to the GP phylogenetic covariance model (used in Vaitla
et al. 2018 for example) we capitalized on the hierarchical nesting of phylogeny
(sensu Thorson 2020), whereby species belong to a given genus, genera to spe-
cific families, and families to specific orders. This implies that species-level
intercepts in the observed data come from a population related by genus group
membership, genera represent samples from families, and families are samples
from their parent orders, which can be represented in a hierarchical phyloge-
netic model that includes a global (overall) mean (�0) at the top of a series of a
non-centred, hierarchical relationships:

γ0 ∼ N(0, 1)

σord ∼ Exp(1)

βoz ∼ N(0, 1)

βord =γ0 + σordβoz

σfam ∼ Exp(1)

βfz ∼ N(0, 1)

βfam = βord + σfamβfz

σgen ∼ Exp(1)

β0,gz ∼ N(0, 1)

β0,gen = β0,fam + σgenβ0,gz

µi = β0,gen + βxX

βi ∼ N(µi, σ)

In both phylogenetic models the set of species level trait covariates was the
same

βxX = β1GZ + β2TL+ β4FP + β5Lmax+ β6BS + β8Amat+ β9WC

Leading to an observation-scale model

µobs = µi + γ1FO + γ2PR

While Hicks et al. 2019 used a mix of Normal, Gamma, and Noncentral-
t distributions for the data likelihood, we chose to model nutrients (except
protein) on the log scale, and used either a Normal (selenium, omega-3)

5

https://www.nature.com/articles/s41586-019-1592-6
https://github.com/mamacneil/NutrientFishbase/blob/master/model/nutrients_DAG.jpg
https://www.nature.com/articles/s41467-018-06199-w
https://www.nature.com/articles/s41467-018-06199-w
https://onlinelibrary.wiley.com/doi/abs/10.1111/faf.12427


γobs ∼ N(µobs, σobs)

or Noncentral-t distribution (protein, zinc, calcium, iron, vitamin A)

γobs Nt(µobs, σobs,τ )

Given regularizing priors

βx, γx ∼ N(0, 1)

σobs ∼ Exp(1)

τ ∼ U(0, 20)

We ran the three models on each of the seven nutrients, using the Python
package PyMC3. Models were run with four separately-initiated chains for 5,000
iterations using a No-U-Turn sampler (NUTS).
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